Perform an aggregation using the aggregation framework


(PECL mongo >=1.3.0)

MongoCollection::aggregatePerform an aggregation using the aggregation framework

Описание

public array MongoCollection::aggregate ( array $pipeline [, array $options ] )
public array MongoCollection::aggregate ( array $op [, array $op [, array $... ]] )

The MongoDB » aggregation framework provides a means to calculate aggregated values without having to use MapReduce. While MapReduce is powerful, it is often more difficult than necessary for many simple aggregation tasks, such as totaling or averaging field values.

This method accepts either a variable amount of pipeline operators, or a single array of operators constituting the pipeline.

Список параметров

pipeline

An array of pipeline operators.

options

Options for the aggregation command. Valid options include:

  • "allowDiskUse"

    Allow aggregation stages to write to temporary files

  • "cursor"

    Options controlling the creation of the cursor object. This option causes the command to return a result document suitable for constructing a MongoCommandCursor. If you need to use this option, you should consider using MongoCollection::aggregateCursor().

  • "explain"

    Return information on the processing of the pipeline.

  • "maxTimeMS"

    Указывает суммарный лимит времени в миллисекундах на обработку операции (не включая время простоя). Если операция не завершилась за это время, то бросается MongoExecutionTimeoutException.

Or

op

First pipeline operator.

op

The second pipeline operator.

...

Additional pipeline operators.

Возвращаемые значения

The result of the aggregation as an array. The ok will be set to 1 on success, 0 on failure.

Ошибки

When an error occurs an array with the following keys will be returned:

  • errmsg - containing the reason for the failure
  • code - the errorcode of the failure
  • ok - will be set to 0.

Список изменений

Версия Описание
1.5.0 Added optional options argument

Примеры

Пример #1 MongoCollection::aggregate() example

The following example aggregation operation pivots data to create a set of author names grouped by tags applied to an article. Call the aggregation framework by issuing the following command:

<?php
$m 
= new MongoClient("localhost");
$c $m->selectDB("examples")->selectCollection("article");
$data = array (
    
'title' => 'this is my title',
    
'author' => 'bob',
    
'posted' => new MongoDate,
    
'pageViews' => 5,
    
'tags' => array ( 'fun''good''fun' ),
    
'comments' => array (
      array (
        
'author' => 'joe',
        
'text' => 'this is cool',
      ),
      array (
        
'author' => 'sam',
        
'text' => 'this is bad',
      ),
    ),
    
'other' =>array (
      
'foo' => 5,
    ),
);
$d $c->insert($data, array("w" => 1));

$ops = array(
    array(
        
'$project' => array(
            
"author" => 1,
            
"tags"   => 1,
        )
    ),
    array(
'$unwind' => '$tags'),
    array(
        
'$group' => array(
            
"_id" => array("tags" => '$tags'),
            
"authors" => array('$addToSet' => '$author'),
        ),
    ),
);
$results $c->aggregate($ops);
var_dump($results);
?>

Результат выполнения данного примера:

 array(2) {   ["result"]=>   array(2) {     [0]=>     array(2) {       ["_id"]=>       array(1) {         ["tags"]=>         string(4) "good"       }       ["authors"]=>       array(1) {         [0]=>         string(3) "bob"       }     }     [1]=>     array(2) {       ["_id"]=>       array(1) {         ["tags"]=>         string(3) "fun"       }       ["authors"]=>       array(1) {         [0]=>         string(3) "bob"       }     }   }   ["ok"]=>   float(1) } 

The following examples use the » zipcode data set. Use mongoimport to load this data set into your mongod instance.

Пример #2 MongoCollection::aggregate() example

To return all states with a population greater than 10 million, use the following aggregation operation:

<?php
$m 
= new MongoClient("localhost");
$c $m->selectDB("test")->selectCollection("zips");

$pipeline = array(
    array(
        
'$group' => array(
            
'_id' => array('state' => '$state''city' => '$city' ),
            
'pop' => array('$sum' => '$pop' )
        )
    ),
    array(
        
'$group' => array(
            
'_id' => '$_id.state',
            
'avgCityPop' => array('$avg' => '$pop')
        )
    )
);
$out $c->aggregate($pipeline);
var_dump($out);
?>

Результатом выполнения данного примера будет что-то подобное:

 array(2) {   ["result"]=>   array(7) {     [0]=>     array(2) {       ["_id"]=>       string(2) "TX"       ["totalPop"]=>       int(16986510)     }     [1]=>     array(2) {       ["_id"]=>       string(2) "PA"       ["totalPop"]=>       int(11881643)     }     [2]=>     array(2) {       ["_id"]=>       string(2) "NY"       ["totalPop"]=>       int(17990455)     }     [3]=>     array(2) {       ["_id"]=>       string(2) "IL"       ["totalPop"]=>       int(11430602)     }     [4]=>     array(2) {       ["_id"]=>       string(2) "CA"       ["totalPop"]=>       int(29760021)     }     [5]=>     array(2) {       ["_id"]=>       string(2) "OH"       ["totalPop"]=>       int(10847115)     }     [6]=>     array(2) {       ["_id"]=>       string(2) "FL"       ["totalPop"]=>       int(12937926)     }   }   ["ok"]=>   float(1) } 

Пример #3 MongoCollection::aggregate() example

To return the average populations for cities in each state, use the following aggregation operation:

<?php
$m 
= new MongoClient;
$c $m->selectDB("test")->selectCollection("zips");

$out $c->aggregate(
    array(
        
'$group' => array(
            
'_id' => array('state' => '$state''city' => '$city' ),
            
'pop' => array('$sum' => '$pop' )
        )
    ),
    array(
        
'$group' => array(
            
'_id' => '$_id.state',
            
'avgCityPop' => array('$avg' => '$pop')
        )
    )
);

var_dump($out);
?>

Результатом выполнения данного примера будет что-то подобное:

 array(2) {   ["result"]=>   array(51) {     [0]=>     array(2) {       ["_id"]=>       string(2) "DC"       ["avgCityPop"]=>       float(303450)     }     [1]=>     array(2) {       ["_id"]=>       string(2) "DE"       ["avgCityPop"]=>       float(14481.913043478)     } ...     [49]=>     array(2) {       ["_id"]=>       string(2) "WI"       ["avgCityPop"]=>       float(7323.0074850299)     }     [50]=>     array(2) {       ["_id"]=>       string(2) "WV"       ["avgCityPop"]=>       float(2759.1953846154)     }   }   ["ok"]=>   float(1) } 

Пример #4 MongoCollection::aggregate() with command options

To return information on how the pipeline will be processed we use the explain comman option

<?php
$m 
= new MongoClient;
$c $m->selectDB("test")->selectCollection("zips");

$pipeline = array(array(
        
'$group' => array(
            
'_id' => '$state',
           
'totalPop' => array('$sum' => '$pop'),
        ),
    ),
    array(
        
'$match' => array('totalPop' => array('$gte' => 10*1000*1000)),
    ),
    array(
        
'$sort' => array("totalPop" => -1),
    ),
);

$options = array("explain" => true);
$out $c->aggregate($pipeline$options);
var_dump($out);
?>

Результатом выполнения данного примера будет что-то подобное:

 array(2) {   ["stages"]=>   array(4) {     [0]=>     array(1) {       ["$cursor"]=>       array(3) {         ["query"]=>         array(0) {         }         ["fields"]=>         array(3) {           ["pop"]=>           int(1)           ["state"]=>           int(1)           ["_id"]=>           int(0)         }         ["plan"]=>         array(4) {           ["cursor"]=>           string(11) "BasicCursor"           ["isMultiKey"]=>           bool(false)           ["scanAndOrder"]=>           bool(false)           ["allPlans"]=>           array(1) {             [0]=>             array(3) {               ["cursor"]=>               string(11) "BasicCursor"               ["isMultiKey"]=>               bool(false)               ["scanAndOrder"]=>               bool(false)             }           }         }       }     }     [1]=>     array(1) {       ["$group"]=>       array(2) {         ["_id"]=>         string(6) "$state"         ["totalPop"]=>         array(1) {           ["$sum"]=>           string(4) "$pop"         }       }     }     [2]=>     array(1) {       ["$match"]=>       array(1) {         ["totalPop"]=>         array(1) {           ["$gte"]=>           int(10000000)         }       }     }     [3]=>     array(1) {       ["$sort"]=>       array(1) {         ["sortKey"]=>         array(1) {           ["totalPop"]=>           int(-1)         }       }     }   }   ["ok"]=>   float(1) } 

Смотрите также